loader

Поделиться
Меню
Поддержка
Пн-Пт: 09:00 - 18:00
Сб: 09:00 - 15:00
Вс: Выходной
0 Корзина Сравнение

Общие сведения по азоту

АЗОТ (лат. Nitrogenium — рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде — газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2. обладающих высокой прочностью. Относится к неметаллам.

Природный азот состоит из стабильных нуклидов 14 N (содержание в смеси 99,635% по массе) и 15 N. Конфигурация внешнего электронного слоя 2s 2 2р 3. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N 3– — 0,132, N 3+ — 0,030 и N 5+ — 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.

Название: название от греческой a (отрицательная приставка) и zoe — жизнь (не поддерживает дыхания и горения).

Физические и химические свойства: плотность газообразного азота при 0°C 1,25046 г/дм 3. жидкого азота (при температуре кипения) — 0,808 кг/дм 3. Газообразный азот при нормальном давлении при температуре –195,8°C переходит в бесцветную жидкость, а при температуре –210,0°C — в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже –237,54°C устойчива форма с кубической решеткой, выше — с гексагональной.

Критическая температура азота –146,95°C, критическое давление 3,9МПа, тройная точка лежит при температуре –210,0°C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.

Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре –210°C).

Энергия связи атомов в молекуле N2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N2 показывает, что электронами в ней заполнены только связывающие s - и p -орбитали. Молекула азота немагнитна (диамагнитна).

Из-за высокой прочности молекулы N2 процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена) при нагревании, ударах и т. д. приводят к образованию молекул N2. Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.

Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития Li3 N. В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует аммиак NH3. Косвенным путем (не из простых веществ) получают гидразин N2 H4 и азотистоводородную кислоту HN3. Соли этой кислоты — азиды. Азид свинца Pb(N3 )2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.

Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF3. NCl3. NBr3 и NI3. а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3 ).

Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые — при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI3 взрывается:

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3 N2. которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:

Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2 N и Fe4 N. При нагревании азота с ацетиленом C2 H2 может быть получен цианистый водород HCN.

Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3. ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты.

История открытия: открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения («удушливый воздух») и в отличие от CO2 не поглощаемый раствором щелочи. Вскоре французский химик А. Л. Лавуазье пришел к выводу, что «удушливый» газ входит в состав атмосферного воздуха, и предложил для него название «azote» (от греч. Azoos — безжизненный). В 1784 английский физик и химик Г. Кавендиш установил присутствие азота в селитре (отсюда латинское название азота, предложенное в 1790 французским химиком Ж. Шанталем).

Нахождение в природе: в природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде — в состав двух селитр: натриевой NaNO3 (встречается в Чили, отсюда название чилийская селитра) и калиевой KNO3 (встречается в Индии, отсюда название индийская селитра) — и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом. Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами. Превращения соединений азота в живых клетках — важнейшая часть обмена веществ у всех организмов.

Получение: в промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (–195,8°C), чем другого компонента воздуха — кислорода (–182,9°C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. Или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH4 Cl к твердому нитриту натрия NaNO2:

Можно также нагревать твердый нитрит аммония:

Применение: в промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения.

Товар добавлен в корзину!